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Abstract

Sufficient conditions which guarantee the oscillation of all solutions to the dif-
ference equation

(1.1) A%u(k) + " pj(k)u (r(k)) =0
=1

=
are established. Here Au(k) = u(k + 1) — u(k), A? = AocA and the coefficients
p;(j = 1,...,m) are arbitrary sequences of nonnegative real numbers. It is to be
emphasized that the deviations 7; are subject to the restriction ljicm +inf 3?-,(;&) >
—TCC

0 (j =1,...,m) only. In the case where j = 1 and 7;(k)=k, a discrete analogue of
the well known Hille’s oscillation theorem is obtained.

1. Introduction

Consider the equation

m
(1.1) A?u(k) + Y ps(k)u (m5(k)) =0,
g=1
where m>1 is a natural number, p; : N — [0,40),75 : N = N (j = 1,..,m)
are functions defined on the set of natural numbers N = {1,2,...}, i.e. sequences,
Au(k) = u(k + 1) — u(k) and A? = AcA.
Throughout this paper, without further mentioning, we will suppose that

(12) Jim (k) = 400 (j = 1,.0m),
(1.3) sup {p;(i) : ik} >0 for keN (j=1,...,m).

For any neEN we set N, = {n,n+1,...}.

1This work was done while the author was visiting the Department of Mathematics, University
of Ioannina, in the framework of the NATO Science Fellowships Programme through the Greek
Ministry of National Economy.
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Definition 1.1. For n€N put no = min {7;(k) : k€EN,, j=1,..,m}. A func-
tion u : N, — R is said to be a proper solution of (1.1) if it satisfies (1.1} on N,
and

sup {Ju(i)| : ik} >0 for keN,.

Definition 1.2. We say that a proper solution u : N—R of the equation
(1.1) is oscillatory if for any n€N there are n;,ns €N, such that u(ni)u(ng) < 0.
Otherwise the proper solution is called nonoscillatory.

The present paper is concerned with the problem of oscillation of all solutions of
the equation (1.1) under the assumption that the deviations 7;(k) -k (j = 1,...,m)
are not necessarily constant and may be unbounded. -

The overwhelming majority of the papers devoted to oscillatory properties of
difference equations treat the case where the deviations are constant. In that case
(or, more generally, in the case where the deviations are bounded), a definition of
the order of difference equations (see, e.g., [4, p.163]) considers the equation (1.1)
as a linear difference equation of the order

max{2,7;(k) — k: k€N, j=1,..,m} — min{0,7;(k) — k : k€N, j =1,..., m}.

In the investigation of oscillatory properties, for the most part, it is more con-
venient to look at the equation (1.1} as a discrete analogue of the second order
ordinary differential equation with deviating arguments

u' () + Y pi()ulr(t) =0.

=1

In the case where the deviations 7;(k) — k are unbounded, only the second
approach seems natural since in that case, according to the above mentioned def-
inition, the equation (1.1) should be considered as an infinite order difference
equation. For this reason we call the equation under consideration a second order
linear difference equation with deviating arguments. Of the papers treating oscilla-
tory properties of linear difference equations in the case of unbounded deviations,
we cite [5, 10, 12].

Oscillatory properties of difference equations analogous to first order ordinary
differential equations with constant deviations are set forth in Chapter 7 of the
monograph [4] and the references cited therein. Of the works studying oscillatory
properties of linear second order difference equations we mention [1, 3, 7, 8, 11] as
being most relevant to the matter of the present paper.

In section 2 some auxiliary statements are proved. In section 3 criteria for
oscillation of all solutions of (1.1) are established. They imply, as a corollary, a
discrete analogue of Hille’s oscillation theorem [6]. The latter result also generalizes
Theorem 3.4 from [1].

Everywhere below, we assume that the following conditions are fulfilled

oo m
(141) Do kD pilk) = 400

k=1 j=1



and

(1.42) >0 > milk)pi(k) = +oo.

k=1 j=1

Each of these conditions is necessary for oscillation of (1.1). Indeed, if one of these
sums is finite, then the equation (1.1) has a proper nonosscilatory solution. To
prove this, consider the space S of all sequences u : N—R with the topology of
pointwise convergence. Take c;,c2€R, ¢1 < ¢z, and for any r€{0, 1} introduce the
set U,CS by u€U,<=rc1k"<u(k)<cok” for keN. If (1.4;) is v1olated then define
the operator Ty : Ug—S by

o= X 2poa (= k+1) T7L; pi(u(ri(2)) for keNy,
To‘u(k) =
T()u(kl) for kEN\Nl,

and if (1.45) is violated, then let T} : U3 —S be as follows:

ok + Y5y, T2, 1 Yoy pi(d)ulr(9)) for keNg,
Tlu(k) =
cok for keN\Ng,,

where ¢y€(c1,¢9) and k1€N. It can be easily checked that if k; is taken large
enough, both 7y and 77 map Ug and Uy, respectively, into themselves and satisfy
all the conditions of the Schauder-Tychonoff theorem. The fixed point will be a
nonoscillatory solution of (1.1).

Everywhere below it will be assumed that

(1.5) 111353@” G=1,...,m).

It is clear that if (1.5) is fulfilled, then (1.4) implies (1.43).

2. Auxiliary Statements

First of all, for convenience of the reader we will formulate as separate lemmas
two versions of the well-known formula of summation by parts (the Abel transform)
which we will use in the sequel.

Lemma 2.1. Let {ai}i;, {bi};=, be two finite sequences of real numbers and
A; =35 a;. Then

n n—1

3" aibi = Anbn+ > Ai(bi — bigr).
gl

i=1

Lemma 2.2. Let {a;};0,, {bi};o; be two infinite sequences, let the series

Yoo q bi be convergent and a;B;11—0 as i—co, where B; = 2_‘:; b;j. Then the
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convergence of either of the series Y oo, aib; and >, (a; — ai-1) B; implies the
convergence of the other and

e o]

oo
z aib; = a1 By + z (a.,; == Cb-,-;..l) B;.

i=1 i=2

Lemma 2.3. Let u : Ny,—R be a nonoscillatory proper solution of (1.1).
Then there exists koEN,, such that

(2.1) u(k)Au(k) > 0 for keNg, .

Proof. Without loss of generality we may assume that u(k) > 0 for k€N, with
k1€N,, sufficiently large. By (1.2) there is kg > k; such that u(7;(k)) > 0 for
k€N, (j =1,...,m). Hence from (1.1) according to (1.3) we have

o0 m
Au(k) =" > pi()ulri(@) > 0 for kN,
i=k j=1

Therefore (2.1) holds. The proof is complete.

Lemma 2.4 Suppose that (1.41), (1.5) holds and v : No,—R is a nonoscillatory
solution of (1.1). Then

k
(2.2) lim |u(k)| = 400, lim sup k)] < +co0.
k—eo k=00 k
Proof. By Lemma 2.3, from (1.1) we get
k=1 oo m
(2.3) @)z D D0 Y pi@luln @) for k2ko,

b=ko i=f j=1

where ko€N is sufficiently large. Using Lemma 2.1, from (2.3) we obtain

lu(k)|>(k — ko) D > pi@)ulr; @)+

i=k j=1
k-1 m
+ 3 (=ko+1) Y pi(D)u(rs(0))-
£=ko j=1
Since u(7;(£))>c > 0 for LeNi,(j = 1,...,m), by (1.4;) we get that the second

summand tends to +oco as k—co which gives the first condition of (2.2).
To prove the second one, calculate

2 (u(k)) _u(k+1) (k) _ k(u(k+1) - u(k)) — u(k) _

k k+1 B k(k+1)
(2.4) = k_A_E_EZ)%(k) for k€N, .

On the other hand,
A(kAu(k) — u(k)) = (k+ 1)Au(k + 1) — (£ + 1)Au(k) =



= (k + 1)A%u(k)<0 for keENp,.
Therefore by (2.4) either (*) A (-"—%-l) >0 for keNp, or (**) there exists ko>ng

such that A (ﬂkﬂ) < 0 for kENg,.

Suppose that (*) holds. Then there is c€(0, +o00) such that u(k)>ck for kEN,,.
Then from (1.1) we get

[ o]

Au(ko)2 e > > pi(k)s(k)

k=ko j=1

which contradicts (1.42). The obtained contradiction shows that (**) holds. But
this means that the second relation of (2.2) is true. The proof is complete.

Lemma 2.5 Let ¢,% : N—(0, +00),% be nonincreasing and

(25) Jm (k) = 400,
(2.6) lim inf 4(k)&(k) = 0,

where @(k) = inf {¢(s) : s>k, s€N}. Then there ezists an increasing sequence of
natural numbers {k;}i, such that

(2.7) @(k:) = (ks), Y(k)P(k) 29 (k:)P(k:)
(k=1,2,...k, *+=12,..)
Proof. Introduce the sets E;(¢ = 1,2) in the following way:
keE1<=p(k) = p(k) ,
keEo<=3(s)y(s)>o(k)y(k) for se{l,...,k}.
According to (2.5) and (2.6), it is obvious that sup E; = 4+co(i = 1,2). Show that
(2.8) sup E1NE; = +co.

Let ko€ E; be such that ko € E;. By (2.5) there is k1 > ko such that @(k) = @(k;)
for k = ko, ko +1,....k1 and (k1) = @(k1). Since v is nonincreasing, we have
P(k)U(k)Zp(k1)¥ (k1) for k=1,... k.

Therefore k1€ E1NE,. This argument shows that (2.8) holds. But this means that
the lemma is true.

Remark 2.1 The analogue of this lemma for continuous ¢ and ¢ first was
proved by R. Koplatadze in [ 9 ].

3. Main Results

Our main results will be obtained under the assumption

(3.1) lim inf Tjg“)

k—+o0

> a; €(0,400) (j=1,...,m) .



Theorem 3.1 Lei (3.1) be fulfilled and there exist § > 1 such that
oo m
5 F =X o A
(3.2) lim inf §_=k: (;:1: pi(@)(m;(0))*) > oA

for any A€[0,1). Then every proper solution of (1.1) is oscillatory.

Proof. First note that the condition (3.2) (for A = 0) implies the condition
(1.41).

Suppose on the contrary that there exists a nonoscillatory solution u : N, —R
of (1.1). According to Lemmas 2.3 and 2.4 there is ko€N such that u(k)Au(k) > 0
for keNy, and ‘

(3.3) klim lu(k)| = +oc0, lim sup (k)] < +o0
— 00

k—+o00 k

Moreover, (2.3) is fulfilled for k€N, .
Without loss of generality assume that 7;(k) > 7*(k) for k € Ni,, where

(3.4) (k) = [0k], a= min{%‘i,l 1 j= 1,...,m}

(here [ak] denotes the integral part of the number ak). Denote by A the set of
those A€[0, +o0) for which
lu(k)l

lim = +o00.
k—oo kA

Using (2.3), we can ascertain that for any A€A the series in the left-hand side of
(3.2) is convergent (see (3.9) below). By (3.3) Ag = sup A is finite and Ao€[0,1).
According to (3.2) and the definition of Ao there exist €(0,1), k1>ko and
A*€[0, Ao]N[0, 1) such that

. k o Julk
9
3.6) KN Z(ij(i)(fj(i))'\‘) 5 ()\*+s)(§)€ for keNp,.
i=k j=1

Indeed, suppose first that Ag > 0. If we choose € so that
e(Z) X

(=2
then we will have P(A) > (A +¢) (2)° for A€ [42, Xo), where P()) is the left-hand
side of (3.2). Then we can choose A*€ [42, o) and ki>ko such that (3.5) and
(3.6) be fulfilled. In the case Ay = 0 the situation is even simpler since we have
the unique choice A* = Ao = 0.

According to (3.1) and (3.4), k; may be supposed large enough for the inequality

0 <

(3.7) L% > -g—a for keNg,.



In view of (3.5), all conditions of Lemma 2.5 are fulfilled with (k)=
(r*(k))™" |u(r*(k))| and 4 (k)=(7*(k))~¢. Therefore there exists an increasing
sequence of natural numbers {k;}; "5 such that
(3.8) T (k) > k1, (7% (k)" @(ki)<(7*(K))~°@(k) for ki<k<k;,

(3.9) Blks) = (7" (k)™ Ju(r*(k:))| for i>2,
where ¢ is defined in the lemma 2.5.

On the other hand, since a < 1 we have 7*(Ny) = Ny.(y. Moreover, 7;(k) >
7*(k) for large k (j = 1,...,m). Therefore

g LN e Ju((0)]

ixk (r;(1))A ~ z>k (r*(@))

=@k) (1=1,...,m)

for large k.
Hence using (2.3), we have

94
*
—
tod
i
—

-1

Z Z p;(7) |u(r;(2))]

k=k; i=k j=1

lu(r™ (k:))|

v

Uy [u(r;(0)
> i) {(1;(3))? inf 222 >
= ord =~ ; p.?( ) ( J( )) >k (T ('l))’\
7" (ki)—1 © m
(3.10) > a(k) > > pii)(m @)Y for ix2.
k=k, i=k j=1
Hence, taking into consideration (3.6)—(3.8), we obtain
9 e (ki)—1
ez +e) (2) 3 awp =
k=k1
e (ki)-1 . €
s (A* ‘f-S) (_i_) Z S-b—(k)(q_*(k))—sk)\‘-1+€ (I_]E.@) =
k=k,
nG 7 (ki)-1
(3.11) > (§) (A* + e)o(k:) (7" (k)¢ Z BN Clte for i>2.
k=k1

We were able to write the latter inequality in view of the fact that 7*(k)<k for
kEN.
Since for any A>0 and £,neN (4<n)

> / g — B (k- 1)) =

LD w2
- _1_ A+l 1 1\A+H1
CA+1 s =07,
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we have
(ki) -1 L
A*~1+e et Y YA e L RAT+E
S BT r —— (k) - ) i B

k=k;

Therefore, taking into consideration (3.9) and the definition of &, from (3.11) we
obtain

et zate ) () (CEIS2) T (1 oy - mime k)

for i>2.

Since (%)5 > 1 and 7*(k;)— + 0o as i—oo0, the last inequality is impossible. This

is a contradiction and the proof is complete.

Theorem 3.2 Let the conditions (1.4;) and (3.1) be fulfilled and there exist
¢ > 1 such that

(3.12) lim 1nka(Z (Tff’)) ) >OA(1-))

i=k

for any A€[0,1). Then all proper solutions of (1.1) are oscillatory.

Proof. It suffices to show that (3.2) holds for any A€[0,1). If the series in the
left-hand side of (3.2) is divergent, then (3.2) is obviously true. Therefore we will
assume that the series is convergent. The convergence of the latter series implies
the convergence of the series in (3.12) and

fim Y 3 (TJ(“)) =0.

k—co
i=k j=1

So using Lemma 2.2, from (3.12) we get

B2 S S 0P =8 S A Lne(%2)) -

i=k j=1
=k1—Akxi(Z psi ( ),\)+
1=k
w5 e (£ o)) -
i=k+1 s=i =
> 0A(1 = A) + OA(1 — Nk Z (- (i -1))i?
i=k+1
_ 1-A e
6A(L )\)(1+k zg—l (= (i - 1) ))

for keNy,, A€[0,1), where k€N is sufficiently large.



Since  71(*— (-1 ="t [}, 2 ldg >
> Xi*? for ieN, Xel0,1),

it suffices to show that

1
i s 1—)\ A2
(3.13) m inf €171 3 277 > o=
i=k+1
‘We have
= . Lt +00 A1
Z jA=e > Z f z*2dy = / 224z = ——(k o 1)A .
i=k+1 i=k+1 V1 k+1 1-

Taking the latter inequality into account, we get convinced that (3.13) is true.
Therefore there exists 8, € (0,6) such that

+o00 m
A
: 3 I-X o/ ANA _
lim inf & ;;m(zmm) > 6,A(1— ) (“m) P

i.e., (3.2) is fulfilled. The proof if complete.
Theorem 3.2 immediately implies the following

Corollary 3.1 Let (3.1) be fulfilled and
pi(K) = cjp(k) for keN (j=1,...,m),
where p: N — [0, +00) and ¢;€(0, +o0) (7 =1,...,m). Let, moreover,
) m -1
N . b .
liT.JEOf kz% (i) > ma.x{(Z; s aj) A1=A): ,\6[0,1]}.
i= i=
Then all proper solutions of (1.1) are oscillatory.
For the equation
(3.14) APu(k) + p(k)u(r(k)) =0
the corollary reads as

Corollary 3.2. Letp:N—[0,+00),T: N—=N,

lim inf T—(—@ = a€(0, +00),
k—+co k
and
A 2 —A _ .
(3.15) lllcrﬁ-q_lgof k E p(3) > max {a™*A(1 = X) : Xg[0,1]} .

i=k
Then all proper solutions of (3.14) are oscillatory.

In the case where a = 1, we get the following discrete analogue of Hille’s well-
known oscillation theorem for ordinary differential equations [6].
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Corollary 3.3 Let ko be an integer, p : N—[0,+00). Then the condition
— 1
(3.16) liﬁjgf k; p(i) > 7

is sufficient for all proper solutions of the equation
A2u(k) + p(k)u(k — ko) =0, k> ko,
to be oscillatory.
This corollary for kg = —1 is proved in [1] (Theorem 3.4).

Remark 3.1 As in the case of ordinary differential equations, the constant % in
(3.16) is optimal and the strict inequality cannot be replaced by the nonstrict one.
More than that, the same is true for the condition (3.15) as well. To ascertain this,
denote by c the right-hand side of (3.15), and by A¢ the point where this maximum
is achieved. The sequence u(k) = k*° obviously is a nonoscillatory proper solution
of the equation

A?u(k) + p(k)u([ek]) = 0,

where p(k) = —%};ﬁ and [a] denotes the integer part of a. It can be easily

calculated that
¢ 1
pk)=-—=+o (ﬁ) as k—oo.

k
Hence for arbitrary ¢ > 0 p(k)> Sz° for k€N, with k€N sufficiently large. Using
the inequality 3 5, i7? > k™! and the arbitrariness of £, we obtain

[&2]
im inf & i) 2> ¢
i otk) s

This limit can not be greater than ¢ by Corollary 3.2. Therefore it equals ¢ and
(3.15) is violated.
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